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Certain speclal features in solving inverse problems for St. Venant equations
are conslidered. Results .are given for computation of a nonsteady regime for the
reach of the Volga River downstream of the XXII CPSU Congress ‘Hydroelectric
Power Plant, using redué¢ed morphometric and hydraulle channel‘chaqgcteristics.

For large rivers with regulated flows and great variabllity in hydraulic and morpho-
metric channel characteristics along their lengths, simplified methods of ‘computing irregu-
lar water motion often seem ineffective. In this connection, riumerous attempts have been
made to use St. Venant equations for this purpose. The overwhelming majority of the stud-
ies have been directed toward developing effective finite-difference schemes for numerical
integration of a given system of equations. These studies have shown that even with the
use of the most effective difference schemes and very detalled measurements of morphometric
(channel width, cross-sectional area) and hydraulic (modulus of flow, roughness coefficient)
channel characteristics, the accuracy of the computations of irregular motion seems inade-
quate for real rivers. One of the reasons for this low accuracy 1s the large error in de-
finltion of channel characteristics (especially the modulus of water flow). On the other
hand, inadequacy of the model_considered and of the actual processes occurring in the chan-
nel has an effect. ‘

To increase accuracy in computing irregular motlons, semiempirical correction of the
original information {1] was®usually carried out by correlation of calculated and actual
discharges and water levels. This is extremely cumbersome and seldom leads to satisfaetory
results. Moreover, Iinstances are not unusual in which, due to limited observatlional data,
it is generally not possible to give initial approximations of the channel characteristics
to be considered. .

A number of articles [3-5] have been devoted to developing more general objective
methods of determining morphometric and hydraulic channel characteristies according to
.data from observations on an irregular water regime, based on solving inverse problems for
St. Venant equations. However, in these articles there is scarcely any conslideration of
problems relating to the use of reduced channel characteristices during numerical integra-
tion of St. Venant equations. : i

Let us consider, using the example of the Volga River below the XXII CPSU Congress
Hydroelectrlc Plant, some special features of determining morphometric and hydraulic chan-
nel characteristics in the case of a discrete representation of water levels along the
length of the river and water discharges in the initial and final sites, and also the-”
possibilities of using reduced characteristices in solving a direct*problem for St. Venant

equations. ¢ .

Let us use a system of St. Venant equations having the followingvnotation:
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where H(x,t) is the water level at point x at time t; Q(x,t) is the water discharge; F(x,H)
is the corss-secticnal area; K(x,H) is the modulus of discharge (passing capacity of chan-
nel); q(x,t) is the lateral flow (run-off) of water per unit of length; g is free fall ac-
celeration.

DETERMINATION OF MORPHOMETRIC AND HYDRAULIC CHANNEL CHARACTERISTICS

The main difficulties in integrating equations (1) and (2) relate to the representation
of functions F(x,H) and K(x,H). Values of area and modulus of water discharge measured at
individual sites along the length of the river seem nonrepresentative for the entire length
of the river, which, as has been noted above, leads to a large error in computing discharges
and water levels.

Following [3], we reduce differential equations (1) and (2) to an integral form, ignor-
ing the inertional terms in (1) and replacing the modulus of water discharge with a Chezy~
Manning relationship. 1In accordance with available information about discharges and water
levels, the integral equatlions are most conveniently represented in the following form:
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where AQ (5 = |qdx=(1—k) Q(0, 1) are losses on the computed portion of the river, k 1is the

ratio of water volumes in the closed and inlet sections, Q(0,t), H(0,t) are discharges and
water levels in the inlet section, Q(L,t), H(L,t) are discharges and water levels in the
closed section, B = dF/dH 1s the channel width, n(x,H) is the Chezy-Manning roughness coef-
ficient.

For a solution of equation (4), the distribution of water discharges along the length
must be determined from a continuity equation after equation (3) has been solved:

t

Since the water dlscharges calculated according to relationship (5) might differ from
the actual discharges, a correction was Introduced, proportional to the discrepancy between
the computed and actual discharges for the closed section.

.

QU tx 0 =Q,(x, 1) —q, (L. H=Q (L, 0] 4.

We shall seek the solution of equations (3) and (4) in the form of an expansion:

Flx, H)=3X D, (x) 9, (Hj, (6)

120

nt(x, H) = l/‘r ) ¢, (H).
‘Eo (J +( ) (7)

where ¢, (H) 1s a complete orthogonal system of Chebyshev polynomials,

Substituting (6) into (3), we obtain the expression
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= ; [Q(0, 5y—Q(L, 1) —4aQ(¢e)} at. (8)

In equation (8) wo[H(x, Tie]=mo[H(x, T))]). which makes it practically impcssible to deter—
nine coefficients Do(x). We shall therefore determine function B(x,H) from (8), not in-

cluding coefficlents Do(x):

B(x, H)= dFL.;} ) =.Z D, (x) d-fji(H\' (9)
1=

We shall determine the defective zero coefficlents Do(x) by integrating equation (9)
over H and substituting expression (6) for F(x,H):

D, (x)e=F (x, H,)— f:D, (x) ¢, (H,). (10)

el

To solve equation (10) 1t is necessary to represent values of the cross-sectiosnal
area along the length for certain levels Hm. It would be convenient to represent the zerc

area of the cross section as corresponding to the elevation of the thalweg (HO) of the

river channel. However, this conditioen can be used only when the amplitude of the actually
measured levels of water used in solving equation (3) corresponds with the section [Hy, H
since in this case normalization of H in the [0,1] section does not viclate the condition
of representing F(x,H) and B(x,H) according to a complete and orthogonal system of poly-
nomials. In the opposite case, the region of determination of the normalized function will
not coincide with the reglon of occurrence of a System of orthogonal approximating poly-
nomials. As numerical experiments have shown, violation of this condition can lead to a
significant distortion of computed functions.

For actual rivers, measured values of F(x,Hm) are not always avallable; therefore this

function must be determined indirectly, by assigning the elevation of the thalweg and in-
troducing several assumptions about the shape of the channel below the elevation Hm. Speci-

fically, a parabolic chanhgel shape was assigned for the section of the Volga considered.
Then the area will be equal to:

Fla Hoy= L B (x Ho1|H, (x1— H, ()i (11)

We shall seek the coefficients of expansion in (6) and (7) for several points along
the length, limited to sites of water level change. Then, substituting the integral of the
sum into (8) and excluding zero coefficients of expansion, we obtain a system of linear
algebraic equations -

-

WD =0 (12)

here W 1s the matrix of the series IX(mK), the elements of which are equal to
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where z 1s the number of moments of time whose data are included in the computation (not
less than mN); N 15 the number of water level observation points; g = ent((f .+ m - 1)/m];

s =J - (8- 1)m; % is the vector of the desired coefficlents of series mN; 1s the vector:
of serles z with elements '

. Tl4|

u = f Q0. n—QqL, ) - 4Q (8) 4z
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Due to errors in the original data, matrix W and vector U will in%lude a certain error.
This circumstance, as a rule, makes it impossible to determine vector rellably, since the
solution of system (12) 1s very sensitive to error, i.,e., is unstable.

To solve this problem, let us use an A. N. Tikhonov functional of the first order [2]
R (D3 ()= || WDy — U, 17 + o | Gy .

Here @,0‘ are, respectively, matrix W and vector ﬁ, assigned with an error §; Il ‘i here and
subsequently 1s a spherical norm,

1= £ §{ e (2] e,

a 1s the parameter of regularization.

The regularizing algorithm in the given problem will be a process of minimization of
the functional R%, including selection of parameter aopt according to an inequality from

(2]

ﬂ‘szop'sa‘.sa?, (14)
where aw corresponds to the local maximum of the function
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a and a correspond to local minimums of functions

«
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(0 is the increment of change of a).

The sought vector Dz, minimizing Ru, represents the solutlion of a system of linear

algebrailc equations

with conslderation of the inequality of (14).

-~

In equation (15) W* is a matrix transposing toward W; C is a three-diagonal quadratic
matrix of the series mN, the elements of which are equal to

i Bl | ! e k)
J + ‘ﬂ—"p—l 'f"——'—z +
l . .
+—xﬁ at =/, 1<p<CV
Ky — X, 1
-sl2 ! + Kppy— X5 at i=j , =1
Cy = Xy — Xg_ | 16
—L QP' + Ky — X5_y at =/, B=N (16)
! .
_T—xp— at j=Ad+-m
1 . ..
_W At f=i—m
0

in the remaining cases
(i=1,2 .., mN; j=I, 2 ... mN)

B=-ent ]H'"T"]
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Having carried out analogous operations for equation (4), we can construct a stable
system for determining coefficients of expansion of function nz(x,H):

(M* M +aC) P =piv a, | (17)
where ?g is the vector of the unknown coefficients; M is the matrix of the series zx(m+.,N
the elements of which are equal to
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C 1s the three-diagonal quadratic matrix of the series (ml + 1)N similar to (16), only with

consideration of zero degrees of approximating polynomials; Za 1s the vector of the series
z with the elements

S=H(© T)-H(L, T),

functions F(x,t) and B(x,t) are determined in accordance with (6) and (7).

In the portion of the Volga considered, which extends for 448 km, there were 9 gaging
stations 1in which water level observations were carried out (XXII CPSU Congress Hydroelec-
tric Power Plant, Volgograd, Krasnoarmeisk, Svetlyl Yar, Kamennyi Yar, Chernyl Yar, Eno-
taevka, Seroglazovka, Verkhnelebyazh'e). In this connection, as a result of solving sys-
tems (15) and (17), values of coefficlents of expansion DS and PS were found for each of

these gaging stations. The total number of coefficients depends on the number of polynom-
ials (m + my o+ 2) taken for functions'F(xi,H) and n2(x1,H).

The optimal number of polynomials approximating function F(x

1,H) was determined start-
ing from the minimum of the following functional:

®=F [Q(L. T)—Q, (L, T)J. (18)
iz

Roughness coefficients change slightly with change of water level. It ther=fore seem-
ed possible to use a small number of polynomials (m;, = 2). A further increase of the num-
ber of polynomials did not lead to any significant %hange i1n the reduced functions.

Figure 1 shows reduced cross-sectional areas and roughness coefficients at m = 6 and

My, = 2. The computed channel characteristics are rather stable functions, not varying ap-

preclably from year to year. The substantial deviations in 1966 are explained, first, by
a large error in the original data, and, second, by the complicated tidal structure of the
Volga River channel, and the irregular, dense network of constant and intermittent water-

courses. The degree of flooding of the floodplain varies greatly from year to year, which
can lead to a different sort of averaging of channel characteristics.

USE OF COMPUTED CHANNEL CHARACTERISTICS IN CALCULATING UNSTABLE REGIME
For numerical integration of equations (1) and.(2) we shall use the Lakes-Vendroff

explicit scheme. As is shown in [4], this scheme is well sulted to uneven original channel
characteristics and at the same time has a relatively slight flattening.
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Fig. 1. Reduced cross-sectional areas (a) and roughness coefficients (b) for

Volga River at Krasnoarmeisk gaging station, based on data from 1966 (1); 1969
(2)5 1970 (3).

Fig. 2. Actual (1) and computed (2) water levels of the Volga River during 1970

for Krasnoarmeisk (43 km from power plant) .(a) and Verkhnelebyazh'e (448 km from
power plant) (b).

In accordance with the Lakes-Vendroff scheme, in odd-numbered increments we

replace
the partial derivatives over x and t with differential relationships of the form
g AW AL) el g (19)
t At v ox <& 23x '
and in even-numbered ones,
2 (0 __ 2 Lt g2 i
o _ /i Ji 9 _ L =0 ,
i Y i e (20)

where At and Ax are increments of integration over time and distance, respectively, 1,4
are numbers of points of the differential grigd along axes x and t, respectively.

For odd-numbered moments of time (2] + 1) the coefficients and right-hand parts or
equations (1) and (2) were approximated in the following manner:

Fleo 0w (f1) 4 120).- (21)

and for eveh—numbered moments of time (2j + 2),

f(x, ty=g2i (22)

Substituting (19)-(22) into equations (1) and (2), we construct a system of differ-
ential equations for determining the discharges and Cross-sectional areas at all internal

puints of the grid region to be considered. For computation of the boundary values of the
unknown functilons, the characteristic equation was used:
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and the following boundary conditions were used:
QO O)=f (), Q(L, H=f[F(L, ).

The left boundary coincided with the XXII cprsy Congress Hydroelectric Power Plant site, the
right boundary with the Verkhnelebyazh'e site.

Observations of lateral affluent (outflow) are not made on the segment considered; the

magnitude of q was therefore determined by computational means, allowing for the degree of
flooding of the floodplain:

(X, O=(1—£k) £, (&) i (x, 1 abs Lrlt (x, 1) dx].

_Hix —H, ix
Hix )= E=H, (1

where H, (x), H, (x) are water levels characterizing, respectively, escape of water onto the
floodplain, and its complete flooding.

The use of morphometric and hydraulic channel characteristics reduced by the above
means 1s made difficult for two reasons: first, 1t 1is necessary to carry out integration of
these characteristics into nodes of the differential grid, since for actual rivers the dis-
tances between sites for which these functions are reduced are significantly larger than
the increment of integration over length; second, computation of roughness coefficients and
cross-sectional areas according to relationships (6) and (7) can be carried out reliably
only in the range of levels used in solving the inverse problem.

In the case considered a linear integration of levels and hydraulic drag calculated
for nine gaging stations was employed. Because of the great variability of cross-sectional
areas from station to station, interpolation according to absolute area values seemed prac-
tically impossible. The range of variation of areas for one site may be too large (small)

for another, which requires a significant extrapolation of functions H(F) and K(F). As has
been noted above, such extrapolation is difficult.

Due to this dircumstance, interpolation was carried out, not according to absolute

values of the areas at points of the differential grid (Fi), but by the use of relative

magnltudes corresponding to the increment of areas over certain of their initial distribu-
tions:

Fi=F4+F — F.

where Fg and Fg are values of areas of the cross section at the initial moment of time,

respectively, for the k-th station and the i-th point of the differential grid. Such a
technique made it possible to narrow down the reglon of scanning of water levels and modu-
11 of discharges very greatly, and to reduce to a minimum the extrapolation of functions
H(F) and K(F). Negligible extrapolation was carried out, with allowance for the gradient
of levels and modull at the extremities of the considered observations of portions of
curves H(F) and K(F); for example, the following expression may be written for H :

_ H
He=H, ~ 7T, 9F

where Hm is the water level corresponding to the maximum (minimum) water level included 1n
the sampling during solution of the inverse problem.

At the initial moment of time, the only water levels assigned are at gages of sites
between which linear interpolation was carried out in the nodes of the differential grid.
The initial water discharges were computed according to a simplified motion equation, with
allowance for a distribution of cross-sectional areas which was not uniform in length:

=Y (-5
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Computations of the transformation of run-offs of the XXII CPSU Congress Volga Hydro-
electrlc Power Plant have shown that the solution obtained was stable and agreed rather
well with actual water levels at lower-lying stations. Fig. 2 shows actual and computed
{(at Ax = 11.2 km, At = 5 min) water levels for the two sites. It can be seen that the re-
sults shown in the literature [1,6] for computations of irregular motion according to St.
Venant equations with the use of morphometric and hydraulic channel characterlstics, obtain-

ed by observatlons on a standard hydrometric grid, are markedly inferior in accuracy to the
computations shown in Fig. 2.

From a practical point of vliew, however, such an accuracy 1s still not sufficient.
Errors are in this instance caused mainly by the presence of an irregularly shaped flood-
plain, which leads to a substantial violation of the hypothesis of uniformity of motion,
limitedness of information about water discharges, and also the use of a "fictitious" thal-
weg, which given the sharply expressed serrated nature of the longitudinal profile of the
river channel, 1s ambiguously determined.

A further increase in accuracy could obviously be attained by differentiated deter-
mination of channel characteristics for the lower and upper (during escape of water onto
the floodplain) water levels, or by correcting certain of obtained coefficients of expan-
sion by means of optimalization methods, by analogy with [3].
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